

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Multi-GNSS real-time troposphere delay estimation

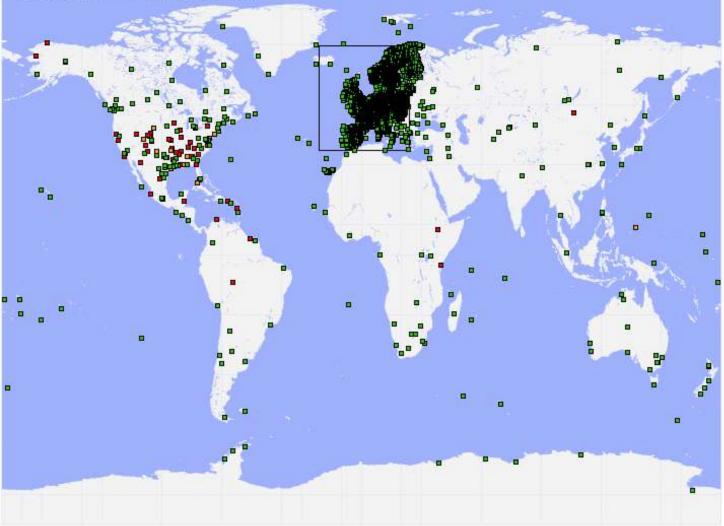
Jaroslaw Bosy, Tomasz Hadas, Jak Kaplon, Kamil Kazmierski

The 7th China Satellite Navigation Conference, May 18-20 Changsha China, Session S1: BDS/GNSS Application Technology

CONTENTS

Introduction WARP software RT ZTD estimation Gradients estimation Conclusion

E-GVAP The EUMETNET EIG GNSS water vapour programme (http://egvap.dmi.dk)

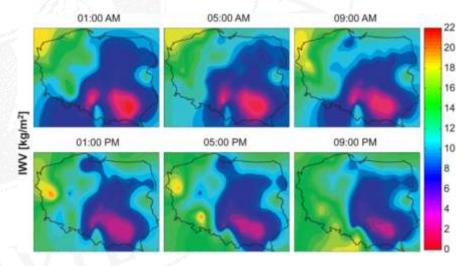


The Network of European Meteorological Services

E-GVAP The EUMETNET EIG GNSS water vapour programme (http://egvap.dmi.dk)

EUMETNET The Network of European Meteorological Services

Network Status@Sun May 8 16:36:13 GMT 2016

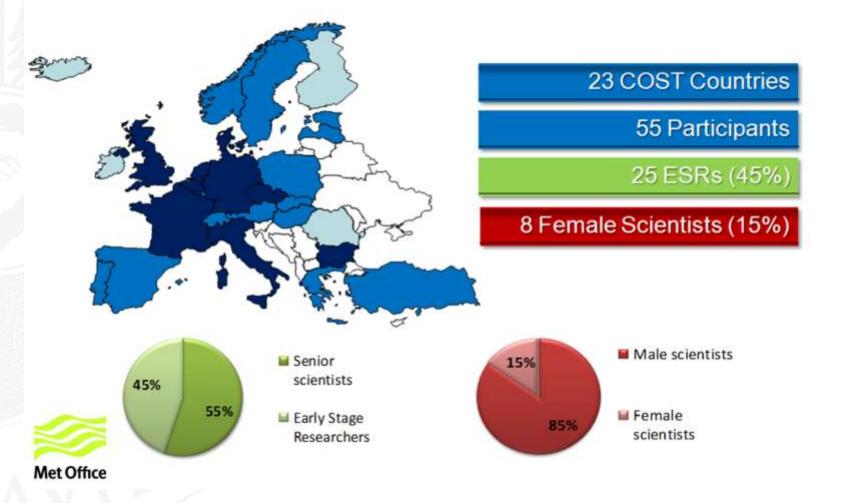

GNSS troposphere monitoring

PPP estimates: X,Y,Z, dt_{rec}, troposphere zenith delays (**ZTD**) and gradients Integrated Water Vapour (IWV):

$$ZHD = [0.0022768 m/mbar] \cdot \frac{P_0}{f(\phi, h)}$$

$$f(\phi, h) = 1 - 0.00266 \cos(2\phi) - 0.00000028h pprox 1$$

$$ZWD = ZTD - ZHD$$
$$IWV = \frac{ZWD}{10^{-6}(k_2' + k_3/T_m)R_v}$$


 P_0 - surface air pressure [mbar]

- h point height [m]
- ϕ point latitude [rad]
- k_2', k_3 empirical coefficients
 - $T_m 70.7 + 0.72 T_0$
 - T_0 surface air temperature
 - R_v 461.525 [J/(kg·K)]

Example of the Integrated Water Vapour (IWV) 2D distribution over the area of Poland calculated for November 7, 2012, shown as a time series with 4 hours interval COST Action ES1206 - GNSS4SWEC - Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate (http://gnss4swec.knmi.nl)

COST Action ES1206 - GNSS4SWEC - Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate (http://gnss4swec.knmi.nl)

The RT PPP service is realized in the frame of WG1

GNSS-WARP software

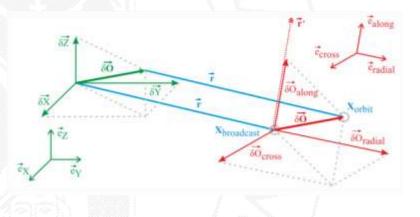
GNSS-WARP Wroclaw Algorithms for Real-time Positioning

- original, self-developed, state-of-the-art PPP software
- purpose: multi-GNSS RT-PPP & PPP-RTK algorithms development
- GNSS: GPS+GLO, GAL & BDS only with MGEX products, RT
- implemented in Matlab (2015a) + Instrument Control Toolbox
- BNC used as RTCM decoder of IGS RTS streams

RT-ZTD optimization (GNSS-WARP v2.1m):

- redeveloped and optimized for multi-station, continuous processing
- performance: >10stations / 1 second @1CPU (currently: >200 stations every 60 seconds)

Strategy:

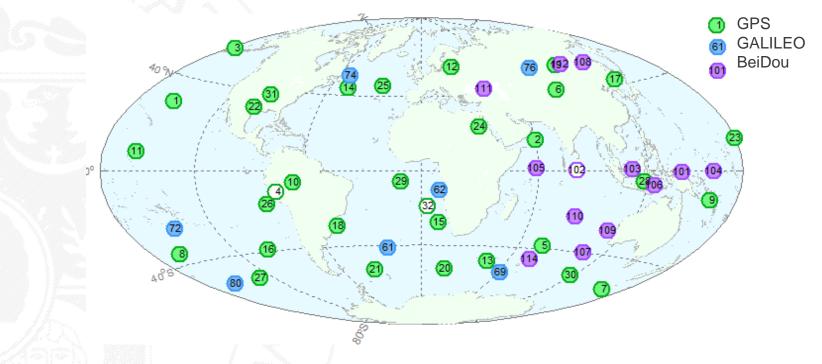

• PPP, static positioning, VMF, IGS03, IERS 2010 models

IGS Real-Time Service

1(5)

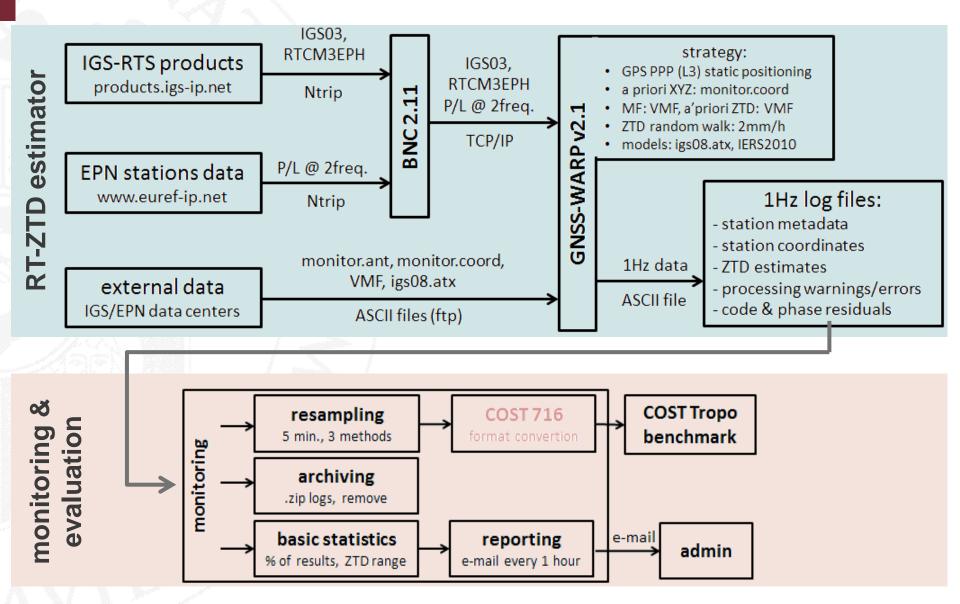
IGS RTS - IGS Real Time Service

real-time orbit and clock correction (SSR RTCM) + broadcast messages (RCTM)

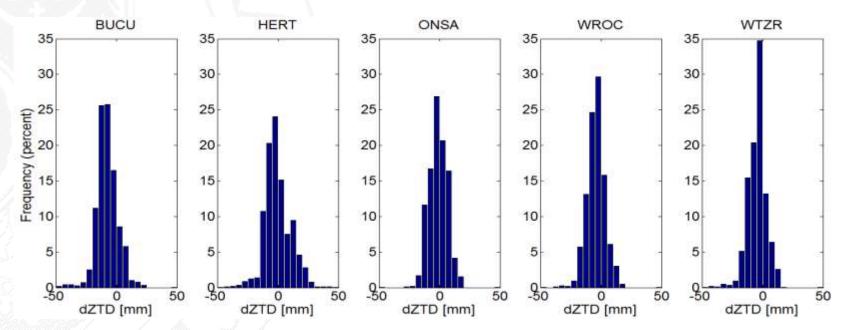


$$\begin{split} \delta \boldsymbol{O} &= \begin{bmatrix} \delta O_{radial} \\ \delta O_{along} \\ \delta O_{cross} \end{bmatrix} + \begin{bmatrix} \delta \dot{O}_{radial} \\ \delta \dot{O}_{along} \\ \delta \dot{O}_{cross} \end{bmatrix} (t - t_0) \\ e_{along} &= \frac{\dot{r}}{|\dot{r}|} e_{cross} = \frac{r \times \dot{r}}{|r \times \dot{r}|} e_{radial} = e_{along} \times e_{cross} \\ \delta \boldsymbol{X} &= \begin{bmatrix} e_{radial} & e_{along} & e_{cross} \end{bmatrix} \delta \boldsymbol{O} \\ \boldsymbol{X} &= \boldsymbol{X}_{broadcast} - \delta \boldsymbol{X} \\ \delta C &= C_0 + C_1 (t - t_0) + C_2 (t - t_0)^2 \\ t^{sat} &= t^{sat}_{broadcast} - \frac{\delta C}{c} \end{split}$$

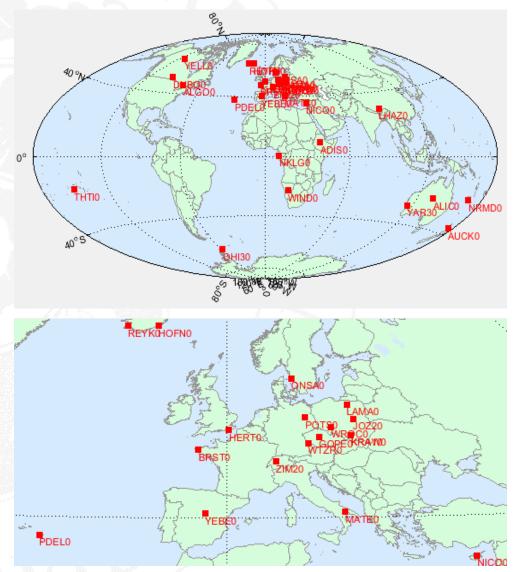
- official products for GPS: 5cm for orbits, 0.3ns (8.5cm) for clocks
- unofficial for GLONASS: 13cm for orbits, 0.8ns (24.5cm) for clocks
- availability >90%, latency ~30 sec.


Hadaś T., Bosy J.: *IGS RTS precise orbits and clocks verification and quality degradation over time,* GPS Solutions, Vol. 19, 2015, pp. 93-105

GNSS-WARP status


	GPS	GLONASS	Galileo	BeiDou
SP3+CLK	operational	operational	operational	test phase
broadcast	operational	operational	operational	tracked
real-time	operational	IOD problems	test phase	not available

GNSS-WARP software – real-time troposphere service


RT ZTD benchmark 1 – simulated real-time

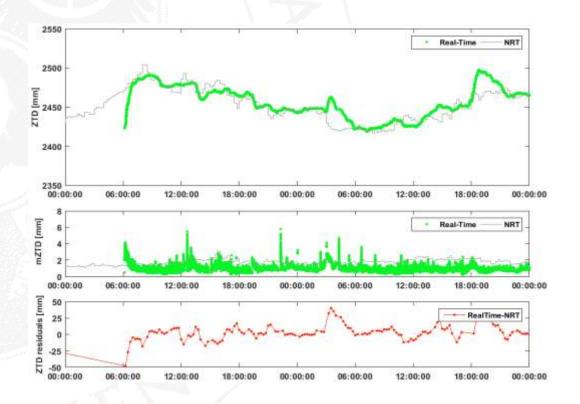
- RTS IGS03 stored (BNC) in SP3 and CLK files, RINEX files for 10 stations, one week
- station by station postprocessing (0.1Hz) with GNSS-WARP v2
- comparison with **final-ZTD** estimates from EPN (**1 hour sampling**)
- purpose: optimize methodology, evaluate possible quality

An optimal solutions among all stations were obtained for 2mm/h to 5mm/hour random walk. The results were slightly biased: -4 mm to +7 mm (note: DD vs PPP solution) and the standard deviations varies from 7 mm to 12 mm.

RT ZTD benchmark 2 - real-time demonstrator (1)

Real-time ZTD:

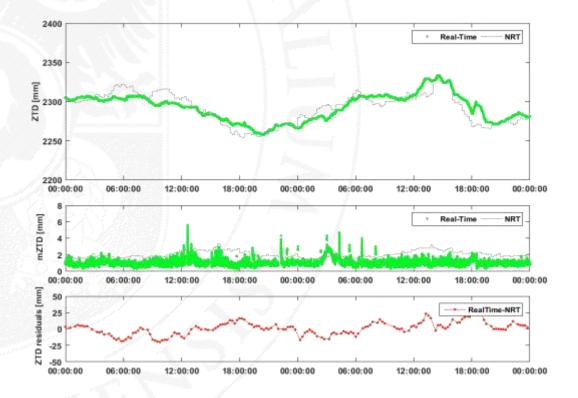
33 stations @ 5 sec. sampling:


- COST RT TROPO benchmark stations (some have problems!)
- Polish EPN stations

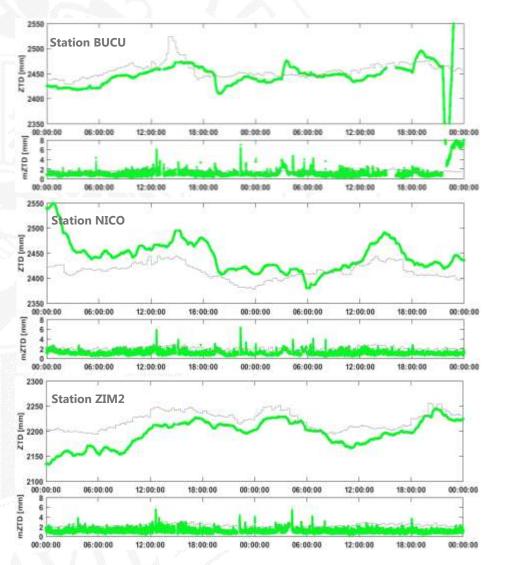
Week 1863 performance (σ - formal error):

- 68% σZTD is below 0.0036 m
- 95% σZTD is below 0.0148 m
- 99% σ ZTD is below 0.0241 m
- data availability: 88.6%

RT ZTD benchmark 2 - real-time demonstrator (2)


- RTS IGS03 stream and 10 observation streams decoded with BNC, one week
- multi-station real-time processing with GNSS-WARP v2.1M
- comparison with NRT from MetOffice (ROBH, 15min sampling)
- purpose: optimize methodology, detect bugs & errors

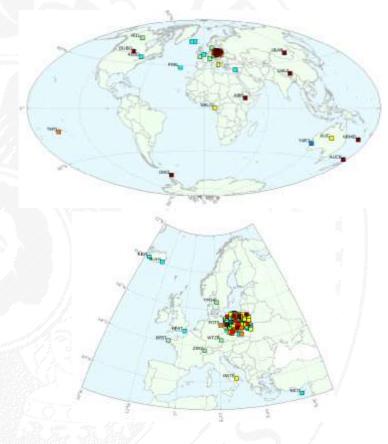
Station **WROC** 13-14.06.2015 availability: 86% mean formal error: 1.1mm mean bias: +1.5mm StdDev of residuals: 15.7mm

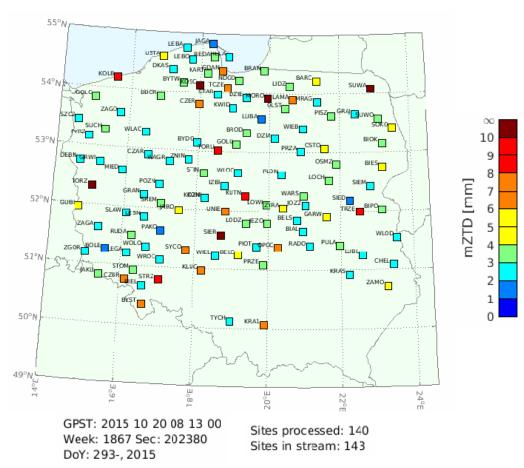

RT ZTD benchmark 2 - real-time demonstrator (2)

- RTS IGS03 stream and 10 observation streams decoded with BNC, one week
- multi-station real-time processing with GNSS-WARP v2.1M
- comparison with NRT from MetOffice (ROBH, 15min sampling)
- purpose: optimize methodology, detect bugs & errors

Station **WTZR** 13-14.06.2015 availability: 97% mean formal error: 1.1mm mean bias: -1.0mm StdDev of residuals: 15.5mm

RT ZTD benchmark 2 - real-time demonstrator (3)

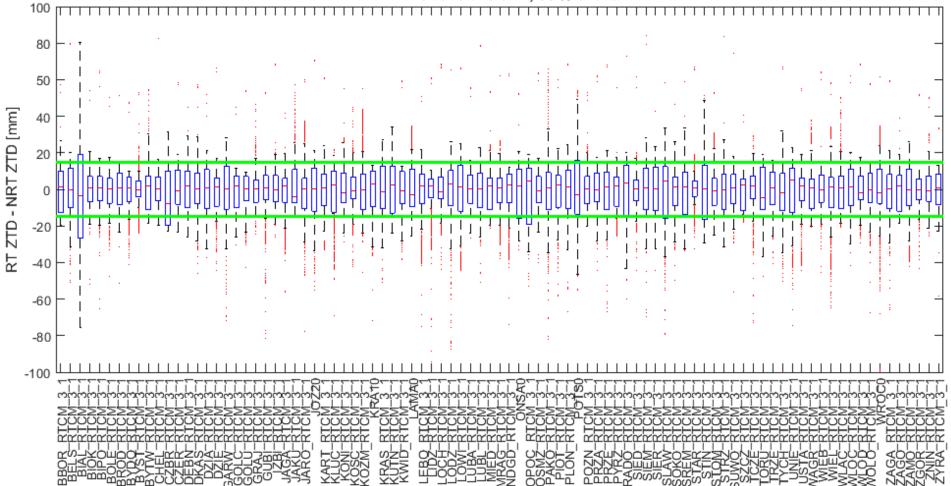

Bugs & errors 1) Real-time service problems:


- IGS03/RTCMEPH stream failure (e.g. mismatching IOD's)
- stream recovery failure in BNC (solved: use Ntrip 1, not Ntrip 2)
- long gaps in streams availability (re-initialization of the solution)

2) Processing errors:

- some rapid ZTD changes not present in RT estimation
- unexpected ZTD peaks in RT
- systematic biases between RT and NRT (DD vs. PPP)

Towards RT-ZTD monitoring service in Poland (1)


Recent problems:

- bad / missing antenna type (monitor.ant) station is incorrect / not processed
- BNC 2.11 failure / errors no data until restarted
- no access to ASG-EPOS streams (all stations) and SmartNet streams (south east)

Towards RT-ZTD monitoring service in Poland (2)

Comparison with NRT ZTD

mZTD treshold: 0.01m; 83 % of data

Towards RT-ZTD monitoring service in Poland (3)

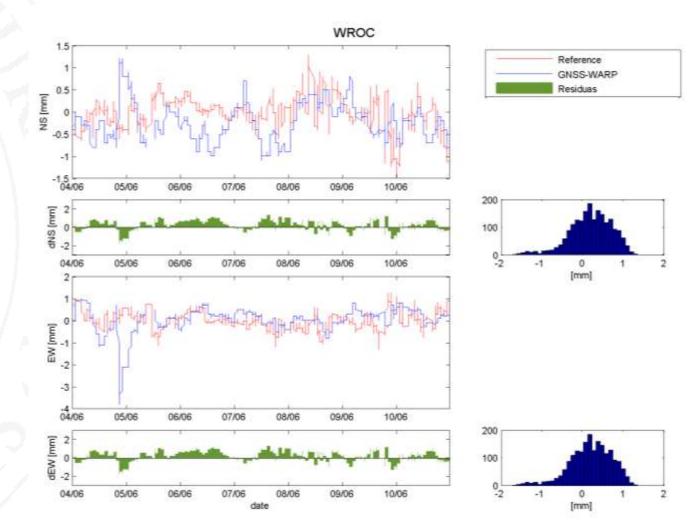
RT ZTD service (under development, improvements required)
14 IGS + 19 EPN + 110 Leica SmartNet

Sub-hourly ZTD	Treshold	Target	Optimal
Accuracy	15 mm	10 mm	5 mm
Timeliness	1 h	30 min	15 min
Spatial coverage	Europe	Europe to National	Regional to National
Horizontal Sampling	100 km	50 km	20 km

RT tropospheric gradient estimation

Calculation parameters				
Products	RT-IGS RT-CNES			
Mapping function	VMF			
Model	Chen & Herring $\delta \kappa \ \varepsilon, \alpha = \frac{1}{\sin \varepsilon \tan \varepsilon + C} \ G_N \cos \alpha + G_E \sin \alpha$			
Interval	every epoch			
Random walk	0.0003 m/sqrt(h)			

RT tropospheric gradient estimation - validation


RT tropospheric gradients (GNSS WARP) vs PPP tropospheric gradients (GIPSY 6.2)

- 8 European station
- 5min sampling
- DoY 155-161 2013
- GPS
- Real-time

in the second	BIAS	[mm]	Std.Dev. [mm]		RMSE [mm]	
	NS	EW	NS	EW	NS	EW
'BRST'	-0,03	-0,13	0,97	0,67	0,99	0,72
'BRUX'	0,07	-0,06	0,54	0,48	0,62	0,50
'BUCU'	0,11	-0,26	0,69	0,70	0,75	0,73
'NICO'	0,05	0,01	0,60	0,72	0,65	0,74
'ONSA'	-0,01	-0,01	0,55	0,78	0,86	1,08
'SFER'	0,15	0,05	0,60	0,72	0,66	0,73
'WROC'	-0,02	0,00	0,53	0,68	0,56	0,68
'ZIMM'	-0,07	0,09	0,61	0,55	0,64	0,55
	0,06	0,08	0,64	0,66	0,72	0,72

RT tropospheric gradient estimation - validation

<u> ////////////////////////////////////</u>			
	BIAS	[mm]	
	NS	EW	
	-0.02	0.00	
	Std.Dev	v. [mm]	
	SN	EW	
	0.53	0.68	
	RMSE	[mm]	
	SN	EW	
	0.56	0.68	

Conclusion

- 1. The RT IGS and other AC centres are the Multi-GNSS products
- 2. The RT PPP is the alternative technique in GNSS meteorology and will be developed in future.
- 3. The gradients estimated in RT are significant information for the meteorology and should be developed in future.
- 4. The PPP positioning technique by external RT ionosphere and troposphere models gives a stable solution and research in this area should be continued.

IAG Commission 4 Positioning and Applications Symposium Wroclaw Poland, September 4-7, 2016

WROCLAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES INSTITUTE OF GEODESY AND GEOINFORMATICS

Abstract submission: June 15, 2016 Notification of acceptance: July 1, 2016 Registration: July 31, 2016

http://www.igig.up.wroc.pl/iag2016/

Multi-GNSS real-time troposphere delay estimation

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Thank You!

Presenting author:

Professor Jaroslaw Bosy Institute of Geodesy and Geoinformatics Wroclaw University of Environmental and Life Sciences

Coresponding authors:

- real-time: tomasz.hadas@up.wroc.pl
- near real-time: jan.kaplon@up.wroc.pl
- multi-GNSS: kamil.kazmierski@up.wroc.pl

www.up.wroc.pl